Langsung ke konten utama

Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA

Menyelesaikan Sistem Persamaan Linear Tiga Variabel - Sistem persamaan linear tiga variabel bisa diartikan sebagai himpunan dari tiga buah persamaan garis lurus dimana masing - masing persamaan tersebut terdiri dari tiga buah peubah (variabel). Ada beberapa metode yang bisa kita pakai untuk menyelesaikan sistem persamaan ini, yaitu metode substitusi, eliminasi, dan determinan. Agar kalian bisa lebih memahami materi ini, sebaiknya kalian pelajari dulu materi tentang Sistem Persamaan Linear Dua Variabel.

Langkah Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV)

Sama halnya dengan prinsip penyelesaian persamaan yang lain, langkah awal kita harus mengurangkan (mengeliminasi) dua persamaan untuk memperoleh persamaan baru dengan menghilangkan satu buah variabel. Simak baik - baik contoh soal dan pembahasan di bawah ini ;

Contoh Soal :
Tentukan himpunan penyelesaian x, y dan z dari persamaan berikunt:

3x - y + 2z = 15    ......(i)
2x + y + z = 13     ......(ii)
3x + 2y + 2z = 24 ......(iii)

Penyelesaian :
Gunakan metode eliminasi terhadap 2 persamaan terlebih dahulu :

3x - y + 2z = 15 X 1 → 3x - y + 2z = 15
2x + y + z = 13  X 2 → 4x + 2y + 2z = 26
                         ____________________ - 
                                       -x - 3y = -11 ......(iv)


2x + y + z = 13      |X2 4x + 2y + 2z = 26
3x + 2y + 2z = 24  |X1 3x + 2y + 2z = 24
                              ____________________ -     
                                                       x = 2 ......(v)

Karena dari persamaan (v) kita sudah mendapatkan nilai x, sekarang tinggal menggunakan metode substitusi terhadap persamaan (iv), sehingga :

-x - 3y = -11
-(2) - 3y = -11
         3y = -11 + 2
              = 9
           y = 3

Sekarang kita telah mendapatkan nilai y. Lansung saja substitusikan nilai x dan y pada salah satu persamaan i, ii, atau iii untuk mengetahui nilai z.

2x + y + z = 13
2(2) + 3 + z = 13
    4 + 3 + z = 13
          7 + z = 13
                z = 13 - 7
                   = 6

Maka himpunan penyelesaian dari ketiga persamaan tersebut adalah {2; 3; 6}

Demikianlah pembahasan singkat materi mengenai Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV). Semoga dengan adanya artikel ini bisa membantu kalian dalam menyelesaiakan soal - soal yang berkaitan dengan materi ini. Teruslah belajar dan belajar!

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 12xyz = 2 (4abc + 6xyz) Faktorisasi Bentuk Kuadrat x 2  + 2xy

perbedaan permutasi dan kombinasi

Pengertian Permutasi dan Kombinasi Permutasi adalah banyaknya cara untuk membuat susunan dengan jumlah pada suatu anggota tertentu dari anggota-anggota suatu himpunan. Kombinasi ialah banyaknya cara memilih anggota pada jumlah tertentu dari dari anggota-anggota suatu himpunan. Atau dengan kalimat lain kombinasi yaitu banyaknya cara membuat himpunan bagian dengan jumlah anggota tertentu dari anggota-anggota suatu himpunan. Rumus Permutasi Misal diketahui himpunan memiliki anggota sejumlah n, maka susunan terurut yang terdiri dari r buah anggota dinamakan permutasi r dari n, ditulis sebagai P(n,r) dimana r lebih kecil atau sama dengan n. Rumus permutasi adalah sebagai berikut. rumus permutasi Jika r = n , Maka P (n,n) = n ! (ingat 0!=1) Contoh untuk menghitung banyaknya cara menyusun urutan dua huruf dari huruf-huruf a, b, c adalah sebagai berikut. Rumus Kombinasi Misal diketahui suatu himpunan mempunyai anggota sejumlah n, maka pemilihan r buah angg

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Macam - Macam Simetri Bangun Datar - Setiap bangun datar mempunyai sifat tersendiri yang menjadi ciri khas bangun datar tersebut. Diantara sifat - sifat tersebut ada yang dinamakan simetri. Dalam pembahasan kali ini kita akan membahas materi yaitu mengenai macam - macam simetri pada bangun datar. Untuk lebih jelasnya perhatikan bik - baik pembahasan di bawah ini. Pengertian Dan Macam - Macam Simetri Pada Bangun Datar Simetri Lipat Simetri lipat pada bangun datar didefinisikan sebagai banyaknya lipatan pada bangun datar yang bisa membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu diketahui bahwa tidak semua bangun datar mempunyai garis yang disebut dengan sumbu simetri. Beberapa bangun datar tidak memiliki sumbu simetri sama sekali. Di bawah ini beberapa gambar bangun datar yang memiliki