Langsung ke konten utama

rumus trigonometri segitiga siku siku

Rumus trigonometri segitiga siku siku - Jika berbicara tentang dasar trigonometri, mutlak kita akan berhadapan dengan segitiga siku-siku, karena trigonometri itu sendiri didefinisikan berdasarkan konsep kesebangunan pada segitiga siku-siku. Diberikan segitiga ABC siku-siku di B dengan ∠ A = θ.
perbandingan trigonometri pada segitiga siku-siku
Jika sisi di depan sudut (opposite) dinamakan "depan", sisi di samping sudut (adjacent) dinamakan "samping" dan sisi miring (hypotenuse) dinamakan "miring", maka perbandingan sisi-sisi tersebut didefinisikan sebagai berikut :
sin(θ)=depanmiringcsc(θ)=miringdepan cos(θ)=sampingmiringsec(θ)=miringsamping tan(θ)=depansampingcot(θ)=sampingdepan
Keterangan :
sin untuk sinus
cos untuk cosinus
tan untuk tangen
csc untuk cosecan
sec untuk secan
cot untuk cotangen
Catatan :
Sisi depan dan sisi samping dapat berubah tergantung sudut yang digunakan, sedangkan sisi miring selalu sama, yaitu sisi terpanjang dan letaknya selalu di depan sudut siku-siku.
Dari definisi diatas dapat kita amati dan simpulkan sebagai berikut :
Cosecan adalah kebalikan dari sinus, ditulis csc(θ)=1sin(θ) Secan adalah kebalikan dari cosinus, ditulis sec(θ)=1cos(θ) Cotangen adalah kebalikan dari tangen, ditulis cot(θ)=1tan(θ)
Tangen adalah perbandingan sinus terhadap cosinus, ditulis tan(θ)=sin(θ)cos(θ)) sehingga cot(θ)=cos(θ)sin(θ)
Contoh 1
Tentukan semua perbandingan trigonometri untuk sudut α pada segitiga ABC dan sudut β untuk segitiga PQR !
Penyelesaian :
Perhatikan segitiga ABC
AC = (3)2+12 = 2
Sesuai dengan definisi, maka
sin(α) = depanmiring = ABAC = 32
cos(α) = sampingmiring = BCAC = 12
tan(α) = depansamping = ABBC = 31 = 3
csc(α) = miringdepan = ACAB = 23 = 233
sec(α) = miringsmping = ACBC = 21 = 2
cot(α) = sampingdepan = BCAB = 13 = 33
Perhatikan segitiga PQR
QR = (2)212 = 1
Sesuai dengan definisi, maka
sin(β) = depanmiring = QRPR = 12 = 22
cos(β) = sampingmiring = PQPR = 12 = 22
tan(β) = depansamping = QRPQ = 11 = 1
csc(β) = miringdepan = PRQR = 21 = 2
sec(β) = miringsamping = PRPQ = 21 = 2
cot(β) = sampingdepan = PQQR = 11 = 1
Contoh 2
Jika tan(α) = 3 dan α sudut lancip, tentukan nilai dari sin2(α)+cos2(α)
Penyelesaian :
tan(α) = depansamping = 31
Karena perbandingan trigonometri memenuhi konsep kesebangunan, dapat ditulis :
depan = 3
samping = 1
Dengan teorema phytagoras
miring = (3)2+12 = 2
Berdasarkan definisi, kita peroleh
sin(α) =  32
cos(α) = 12
sin2(α) + cos2(α) = (32)2 + (12)2
sin2(α) + cos2(α) = 34 + 14
sin2(α) + cos2(α) = 1
Jadi, sin2(α) + cos2(α) = 1
Contoh 3
Jika sin(β) = 12 dan sudut β lancip, tentukan nilai dari sec2(β)tan2(β)
Penyelesaian :
sin(β) = depanmiring = 12
depan = 1
miring = 2
samping = 2212 = 3
Sesuai definisi
sec(β) = 23
tan(β) = 13
sec2(β) − tan2(β) = (23)2 − (13)2
sec2(α) − tan2(α) = 4313
sec2(α) − tan2(α) = 1
Jadi, sec2(β) − tan2(β) = 1
Contoh 4
Jika cos(γ) = 22 dan sudut γ lancip, tentukan nilai dari csc2(γ)cot2(γ)
Penyelesaian :
cos(γ) = sampingmiring = 22
samping = 2
miring = 2
depan = 22(2)2 = 2
Sesuai definisi
csc(γ) = 22
cot(γ) = 22 = 1
csc2(γ) − cot2(γ) = (22)2  − (1)2
csc2(γ) − cot2(α) = 2 − 1
csc2(γ) − cot2(α) = 1
Jadi, csc2(γ) − cot2(γ) = 1
Contoh 5
Diberikan segitiga ABC B dengan A=α dan C=β. Tunjukkan bahwa sin(α)=cos(90α) dan cos(β)=sin(90β)
Penyelesaian :
Sesuai definisi, maka
sin(α) = BCAC
cos(β) = BCAC
Dari kedua persamaan diatas, maka
sin(α) = cos(β)  ......................................(1)
∠A + ∠B + ∠C = 180°
α + 90° + β = 180°
α + β = 90°
α = 90° − β  .............................(2)
β = 90° − α  .............................(3)
Substitusi (2) ke (1) diperoleh
sin(90° − β) = cos(β)
Substitusi (3) ke (1) diperoleh
sin(α) = cos(90° − α)
Contoh 6
Diketahui segitiga ABC B. Titik D terletak pada BC sehingga CD=1. Jika ADB=α dan ACB=β, tunjukkan bahwa AB=tan(α)tan(β)tan(α)tan(β)
Penyelesaian :
Perhatikan segitiga ABD
tan(α) = ABBD
⇔ AB = BD tan(α)  ................................(1)
Perhatikan segitiga ABC
tan(β) = ABBD+1
⇔ AB = (BD + 1) tan(β)  .......................(2)
Dari persamaan (1) dan (2)
BD tan(α) = (BD + 1) tan(β)
BD tan(α) = BD tan(β) + tan(β)
BD tan(α) − BD tan(β) = tan(β)
BD(tan(α) − tan(β)) = tan(β)
BD = tan(β)tan(α)tan(β)  ..................................(3)
Substitusi (3) ke (1)
AB = tan(β)tan(α)tan(β) tan(α)
diperoleh
AB = tan(α)tan(β)tan(α)tan(β) 

Sumber: smatika.blogspot.com

Komentar

Postingan populer dari blog ini

Satuan Waktu Dalam Matematika Disertai Contoh Soal dan Pembahasannya

Pembahasan Satuan Waktu Disertai Contoh Soal - Satuan pengukuran waktu secara umum terdiri dari detik, menit, jam, hari, minggu, bulan, dan tahun. Namun satuan waktu dalam matematika masih banyak yang lainnya. Untuk lebih jelasnya dalam artikel kali ini saya akan menjelaskan tentang macam - macam satuan pengukuran waktu beserta contoh soal satuan waktu dan pembahasannya. Daftar Satuan Pengukuran Waktu Dalam Matematika => 1 menit = 60 detik => 1 jam = 60 menit => 1 jam = 3600 detik => 1 hari = 24 jam => 1 minggu = 7 hari => 1 bulan = 30 hari => 1 tahun = 52 minggu => 1 tahun = 12 bulan => 1 lustrum = 5 tahun => 1 windu = 8 tahun => 1 dasa warsa = 10 tahun => 1 abad = 100 tahun Setelah mengetahui berbagai macam pengukuran satuan waktu di atas kita bisa lebih mudah untuk menyelesaikan soal - soal tentang pengukuran satuan waktu. Perhatikan bentuk - bentuk soal di bawah ini : Soal 1...

Operasi Aljabar Pada Bentuk Akar Dilengkapi Pembahasan Contoh Soal

Operasi Aljabar Pada Bentuk Akar - Operasi aljabar pada bentuk akar merupakan operasi dalam bentuk penjumlahan, pengurangan ,perkalian maupun pembagian dalam bentuk akar yang digunakan untuk menyederhanakan bentuk akar. Penjumlahan dan Pengurangan Bentuk Akar Sifat - sifat dari penjumlahan dan pengurangan bentuk akar yang biasa di gunakan secara umum bisa digambarkan berikut ini :                                             a√b  + c√b  = (a + c) √b                                             a√b  - c√b  = (a - c) √b                                             dengan a, b, c, ∈R dan b ≥ 0 Dari gambar sifat-sifat per...

Pembulatan dan Penaksiran Lengkap Dengan Pembahasan Contoh Soal

Pembulatan dan Penaksiran - Materi matematika kelas 4 salah satu yang diajarkan yaitu tenang pembulatan dan penaksiran. Pembulatan dan penaksiran merupakan suatu pemikiran yang menghasilkan prakiraan (kira-kira) sehingga, dari hasil prakiraan tersebut sering dilakukan pembulatan. Di bawah ini merupakan penjelasan mengenai pembulatan dan penaksiran. 1. Pembulatan Dalam pembulatan sebuah bilangan terdapat aturan atau ketentuan. Aturannya adalah sebagai berikut: Pembulatan Menuju Puluhan Terdekat - Angka satuan yang kurang dari 5 maka pembulatannya ke bawah - Angka satuan yang lebih dari atau sama dengan 5 maka pembulatannya ke atas Contoh : Angka 34 dibulatkan menjadi 30 (karena posisi satuan 4 nilainya kurang dari 5, maka dari itu dibulatkan ke bawah) Angka 57 dibulatkan menjadi 60 (karena posisi satuan 7 nilainya lebih dari 5, maka dari itu dibulatkan ke atas) Pembulaan Menuju Ratusan Terdekat - Angka puluhan yang kurang dari 50 maka pembulatannya ke ...