Langsung ke konten utama

Gambar Jaring - Jaring Bangun Ruang Lengkap

Jaring - Jaring Bangun Ruang - Jaring - jaring merupakan pembelahan sebuah bangun yang berkaitan sehingga jika digabungkan akan menjadi sebuah bangun ruang tertentu. Setiap bangun ruang memiliki bentuk jaring - jaring yang berbeda tergantung pada bentuk sisi - sisi pada bangun ruang tersebut. Bangun ruang yang akan dibahas dalam materi kali ini yaitu kubus, balok, tabung. kerucut, prisma, dan limas.

Gambar Jaring - Jaring Bangun Ruang Lengkap

Kubus
Kubus adalah sebuah bangun ruang yang terbentuk oleh enam buah sisi yang saling berbatasan dimana tiap sisi tersebut berbentuk persegi dengan ukuran yang sama besar. Sehingga apabila kita membelah sebuah kubus kemudian meletakkannya pada posisi mendatar akan diperoleh jaring - jaring kubus yang merupakan susunan dari enam buah persegi seperti terlihat pada gambar di bawah ini :

Balok
Sama halnya dengan kubus, balok juga terdiri dari enam buah sisi akan tetapi ukuran sisi pada balok berbeda. Terdapat 3 pasang sisi yang mempunyai ukuran yang sama. Sehingga jaring - jaring balok terdiri dari 6 buah persegi atau persegi panjang.

Gambar Jaring - Jaring Bangun Ruang Lengkap

Prisma Segitiga
Prisma segitiga merupakan bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup berbentuk segitiga dan sisi - sisi tegak berbentuk segi empat. Sehingga jaring - jaring prisma segitiga terdiri dari dua buah segitiga dan tiga buah persegi atau persegi panjang.

Gambar Jaring - Jaring Bangun Ruang Lengkap


Prisma Segilima
Prisma segilima merupakan bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup berbentuk segilima dan sisi - sisi tegak berbentuk segi empat. Sehingga jaring - jaring prisma segitiga terdiri dari dua buah segilima dan lima buah persegi atau persegi panjang.

Gambar Jaring - Jaring Bangun Ruang Lengkap

Prisma Segienam
Prisma segienam merupakan bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup berbentuk segienam dan sisi - sisi tegak berbentuk segiempat. Sehingga jaring - jaring prisma segienam terdiri dari dua buah segienam dan enam buah persegi atau persegi panjang.

Gambar Jaring - Jaring Bangun Ruang Lengkap


Tabung
Tabung atau silinder merupakan bangun ruang tiga dimensi yang dibentuk oleh dua buah lingkaran yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut. Sehingga jaring - jaring tabung terdiri dari dua buah lingkaran dan sebuah persegi panjang.

Gambar Jaring - Jaring Bangun Ruang Lengkap

Kerucut
Jaring - jaring kerucut terdiri dari sebuah segitiga yang memiliki alas berbentuk lengkungan kemudian pada bagian bawahnya terdapat sebuah lingkaran yang menjadi alas kerucut.

Gambar Jaring - Jaring Bangun Ruang Lengkap
Limas Segitiga
Limas segitiga merupakan bangun ruang tiga dimensi yang dibatasi oleh alas berbentuk segitiga dan tiga sisi tegak berbentuk segitiga.
Gambar Jaring - Jaring Bangun Ruang Lengkap

Limas Segi empat
Limas segi empat merupakan bangun ruang tiga dimensi yang dibatasi oleh alas berbentuk segi empat atau persegi dan empat sisi tegak berbentuk segitiga.

Gambar Jaring - Jaring Bangun Ruang Lengkap

Limas Segilima
Limas segilima merupakan bangun ruang tiga dimensi yang dibatasi oleh alas berbentuk segilima dimana tiap - tiap sisinya berbatasan dengan lima buah segitiga.

Gambar Jaring - Jaring Bangun Ruang Lengkap

Limas Segienam
Limas segienam merupakan bangun ruang tiga dimensi yang dibatasi oleh alas berbentuk segienam dimana tiap - tiap sisinya berbatasan dengan enam buah segitiga.
Gambar Jaring - Jaring Bangun Ruang Lengkap

Demikianlah pembahasan materi mengenai Gambar Jaring - Jaring Bangun Ruang Lengkap. Semoga kalian bisa memahami penjelasan materi ini dengan baik. Untuk menambah wawasan kalian mengenai bangun ruang pelajari juga materi tentang Sifat - Sifat Bangun Ruang. Selamat belajar! a

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 12xyz = 2 (4abc + 6xyz) Faktorisasi Bentuk Kuadrat x 2  + 2xy

perbedaan permutasi dan kombinasi

Pengertian Permutasi dan Kombinasi Permutasi adalah banyaknya cara untuk membuat susunan dengan jumlah pada suatu anggota tertentu dari anggota-anggota suatu himpunan. Kombinasi ialah banyaknya cara memilih anggota pada jumlah tertentu dari dari anggota-anggota suatu himpunan. Atau dengan kalimat lain kombinasi yaitu banyaknya cara membuat himpunan bagian dengan jumlah anggota tertentu dari anggota-anggota suatu himpunan. Rumus Permutasi Misal diketahui himpunan memiliki anggota sejumlah n, maka susunan terurut yang terdiri dari r buah anggota dinamakan permutasi r dari n, ditulis sebagai P(n,r) dimana r lebih kecil atau sama dengan n. Rumus permutasi adalah sebagai berikut. rumus permutasi Jika r = n , Maka P (n,n) = n ! (ingat 0!=1) Contoh untuk menghitung banyaknya cara menyusun urutan dua huruf dari huruf-huruf a, b, c adalah sebagai berikut. Rumus Kombinasi Misal diketahui suatu himpunan mempunyai anggota sejumlah n, maka pemilihan r buah angg

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Macam - Macam Simetri Bangun Datar - Setiap bangun datar mempunyai sifat tersendiri yang menjadi ciri khas bangun datar tersebut. Diantara sifat - sifat tersebut ada yang dinamakan simetri. Dalam pembahasan kali ini kita akan membahas materi yaitu mengenai macam - macam simetri pada bangun datar. Untuk lebih jelasnya perhatikan bik - baik pembahasan di bawah ini. Pengertian Dan Macam - Macam Simetri Pada Bangun Datar Simetri Lipat Simetri lipat pada bangun datar didefinisikan sebagai banyaknya lipatan pada bangun datar yang bisa membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu diketahui bahwa tidak semua bangun datar mempunyai garis yang disebut dengan sumbu simetri. Beberapa bangun datar tidak memiliki sumbu simetri sama sekali. Di bawah ini beberapa gambar bangun datar yang memiliki