Langsung ke konten utama

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Macam - Macam Simetri Bangun Datar - Setiap bangun datar mempunyai sifat tersendiri yang menjadi ciri khas bangun datar tersebut. Diantara sifat - sifat tersebut ada yang dinamakan simetri. Dalam pembahasan kali ini kita akan membahas materi yaitu mengenai macam - macam simetri pada bangun datar. Untuk lebih jelasnya perhatikan bik - baik pembahasan di bawah ini.

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Simetri Lipat
Simetri lipat pada bangun datar didefinisikan sebagai banyaknya lipatan pada bangun datar yang bisa membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu diketahui bahwa tidak semua bangun datar mempunyai garis yang disebut dengan sumbu simetri. Beberapa bangun datar tidak memiliki sumbu simetri sama sekali. Di bawah ini beberapa gambar bangun datar yang memiliki sumbu simetri :

Dalam gambar di atas, garis atau sumbu simetri digambarkan dengan garis putus - putus. Apabila kita melipat atau memotong sebuah bangun datar dengan mengikuti garis - garis simetri tersebut maka bangun datar itu akan terbagi menjadi dua bagian yang sama besar.

Simetri Putar Sebuah bangun datar bisa dikatakan memiliki simetri putar jika ia memiliki sebuah titik pusat dan jika bangun datar tersebut bisa kita putar kurang dari satu putaran penuh untuk mendapatkan bayangan yang tepat seperti bangun semula. Sebagai contoh perhatikan gambar berikut :

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Dalam gambar di atas, terdapat sebuah bangun datar berbentuk segitiga sama sisi. Apabila kita memutar segitiga tersebut sebanyak 1/3 putaran berlawanan dengan arah jarum jam, maka bentuknya akan tetap sama seperti semula. Kemudian jika kita memutar segitiga sama sisi tersebut sebanyak 2/3 putaran hasil bayangannya tetap sama persis dengan bangun semula. Hal seperti ini artinya segitiga sama sisi mempunyai 3 simetri putar.

Jika kita memutar sebuah bangun datar dan hanya bisa menghasilkan bayangan seperti bangun semula dalam satu putaran penuh, artinya bangun datar tersebut tidak memiliki simetri putar. Contohnya adalah trapesium, bangun datar ini tidak memiliki simetri putar karena kita harus memutar sebanyak satu putaran penuh untuk memperoleh bentuk bayangan trapesium seperti bentuk bangun semula.

Tidak semua bangun datar memiliki simetri putar dan simetri lipat. Beberapa bangun datar ada yang hanya memiliki simetri putar, sementara yang lain ada yang memiliki simetri lipat. Di bawah ini kalian bisa melihat daftar tabel simetri lipat dan simetri putar yang dimiliki oleh tiap - tiap bangun datar :

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Demikianlah pembahasan materi mengenai Pengertian Dan Macam - Macam Simetri Pada Bangun Datar. Semoga kalian bisa memahami penjelasan di atas dengan baik sehingga wawasan kalian mengenai bangun datar akan terus bertambah. Selamat belajar!

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 12xyz = 2 (4abc + 6xyz) Faktorisasi Bentuk Kuadrat x 2  + 2xy

perbedaan permutasi dan kombinasi

Pengertian Permutasi dan Kombinasi Permutasi adalah banyaknya cara untuk membuat susunan dengan jumlah pada suatu anggota tertentu dari anggota-anggota suatu himpunan. Kombinasi ialah banyaknya cara memilih anggota pada jumlah tertentu dari dari anggota-anggota suatu himpunan. Atau dengan kalimat lain kombinasi yaitu banyaknya cara membuat himpunan bagian dengan jumlah anggota tertentu dari anggota-anggota suatu himpunan. Rumus Permutasi Misal diketahui himpunan memiliki anggota sejumlah n, maka susunan terurut yang terdiri dari r buah anggota dinamakan permutasi r dari n, ditulis sebagai P(n,r) dimana r lebih kecil atau sama dengan n. Rumus permutasi adalah sebagai berikut. rumus permutasi Jika r = n , Maka P (n,n) = n ! (ingat 0!=1) Contoh untuk menghitung banyaknya cara menyusun urutan dua huruf dari huruf-huruf a, b, c adalah sebagai berikut. Rumus Kombinasi Misal diketahui suatu himpunan mempunyai anggota sejumlah n, maka pemilihan r buah angg