Langsung ke konten utama

soal pemfaktoran aljabar smp

Soal pemfaktoran aljabar smp ~ Pemfaktoran merupakan cara yang digunakan untuk menyelesaikan persamaan aljabar disertai persamaan kuadrat maupun bentuk polinominal lainnya. Pemfaktoran aljabar merupakan langkah yang digunakan untuk menghitung persamaan aljabar, baik dalam bentuk faktorisasi ataupun perkalian aljabar. Lalu bagaimana rumus pemfaktoran aljabar? Pada dasarnya banyak contoh soal pemfaktoran aljabar yang digunakan sebagai soal ujian sekolah. Maka dari itu setiap siswa harus memahami rumus aljabar tersebut. 

Dalam pembahasan ini kita mengenal adanya faktorisasi aljabar. Faktorisasi tersebut berkaitan dengan faktor bilangan yang dapat membagi habis bilangan itu sendiri. Misalnya bentuk aljabar pq = p x q. Dari persamaan tersebut dapat kita peroleh faktorisasinya yakni p dan q. Selain itu adapula contoh lainnya seperti bentuk aljabar dari a(p + q) dengan faktorisasinya a dan (p + q). Kali ini saya akan menjelaskan tentang rumus pemfaktoran aljabar Matematika beserta contoh soal pemfaktoran aljabar. Untuk lebih jelasnya dapat anda simak di bawah ini.

Rumus Pemfaktoran Aljabar Matematika Beserta Contoh Soal

Untuk menyelesaikan soal soal pemfaktoran aljabar, kita dapat menggunakan rumus khusus. Rumus pemfaktoran aljabar tersebut dapat dibagi menjadi beberapa metode, yaitu metode menggunakan sifat distributif, metode dalam bentuk selisih kuadrat, metode dalam bentuk kuadrat sempurna, metode dalam bentuk ax² + bx + c (a = 0) dan ax² + bx + c (a ≠ 0). Saya juga akan menyertakan beberapa contoh soal pemfaktoran aljabar disetiap metodenya. Berikut ulasan selengkapnya:

Metode Distributif Dalam Pemfaktoran Aljabar

Rumus pemfaktoran aljabar yang pertama menggunakan metode distributif. Metode ini digunakan untuk menyelesaikan pemfaktoran aljabar dengan cara mencari FPB dari aljabar tersebut. Adapun persamaan distributif yang dapat digunakan untuk menyelesaikan soal pemfaktoran aljabar sebagai berikut:
a x (b + c) = (a x b) + (a x c)
Contoh Soal 
Hitunglah faktor dari bentuk aljabar dibawah ini!
1. 4x²y + 8xy² 

Jawab.
Untuk menyelesaikan bentuk aljabar diatas maka harus mencari FPB nya terlebih dahulu
FPB dari 4x²y + 8xy² = 4xy
Maka bentuk pemfaktorannya : 4x²y + 8xy² = 4xy (x + 2y)
2. 10pq + pq²r
Jawab.
Untuk menyelesaikan bentuk aljabar diatas maka harus mencari FPB nya terlebih dahulu
FPB dari 10pq + pq²r = pq
Maka bentuk pemfaktorannya : 10pq + pq²r = pq (10 + qr)
3. 4a² + 6a²b
Jawab.
Untuk menyelesaikan bentuk aljabar diatas maka harus mencari FPB nya terlebih dahulu
FPB dari 4a² + 6a²b = 2a²
Maka bentuk pemfaktorannya : 4a² + 6a²b = 2a² (2 + 3b)
4. 3y² + 6x²y
Jawab.
Untuk menyelesaikan bentuk aljabar diatas maka harus mencari FPB nya terlebih dahulu
FPB dari 3y² + 6x²y = 3y
Maka bentuk pemfaktorannya : 3y² + 6x²y = 3y (y + 2x²)
5. 2x²y + 8xy²
Jawab.
Untuk menyelesaikan bentuk aljabar diatas maka harus mencari FPB nya terlebih dahulu
FPB dari 2x²y + 8xy² = 2xy
Maka bentuk pemfaktorannya : 2x²y + 8xy² = 2xy (x + 4y)

Metode Pemfaktoran Dalam Bentuk Selisih Kuadrat

Rumus pemfaktoran aljabar selanjutnya menggunakan metode selisih kuadrat. Adapun persamaan dalam bentuk selisih kuadrat yang dapat digunakan untuk menyelesaikan soal pemfaktoran aljabar sebagai berikut:
a² – b² = (a + b)(a – b)
Contoh Soal 
Hitunglah faktor dari bentuk aljabar dibawah ini!
1. x² – 4² = (x + 4)(x – 4)
2. 2² – x² = (2 + x)(2 – x)
3. 6² – x² = (6 + x)(6 – x)
4. 9x² – 25 = (3x)² – (5)²
                  = (3x + 5)(3x – 5)
Rumus Pemfaktoran Aljabar Matematika Beserta Contoh Soal

Metode Pemfaktoran Dalam Bentuk Kuadrat Sempurna

Rumus pemfaktoran aljabar selanjutnya menggunakan metode kuadrat sempurna. Adapun persamaan dalam bentuk kuadrat sempurna yang dapat digunakan untuk menyelesaikan soal pemfaktoran aljabar sebagai berikut:
a² +2ab + b² = (a + b)(a + b) atau
a² – 2ab + b² = (a – b)(a – b)
Contoh Soal 
Hitunglah faktor dari bentuk aljabar dibawah ini!
1. a² + 8ab + 16 = (a + 4)(a + 4)
2. x² – 4ab + 4 = (x – 2)(x – 2)
3. 9b² – 24bc + 16c² = (3b – 4c)(3b – 4c)
4. p² – 14p + 49 = (p – 7)(p – 7)
5. 25a² – 30a + 9 = (5a – 3)(5a – 3)

Metode Pemfaktoran ax² + bx + c = 0, a = 0

Rumus pemfaktoran aljabar selanjutnya menggunakan metode ax² + bx + c dimana a = 0. Berikut persamaannya:
ax² + bx + c = (x + m)(x + n)
dimana
m + n = b
m x n = c
Contoh Soal 
Hitunglah faktor dari bentuk aljabar dibawah ini!
1. a² + 8a + 15 = . . .
Jawab,
Sebelumnya harus menentukan dua angka yang jika ditambahkan nilainya sama dengan angka tengah dan jika dikalikan nilainya sama dengan angka ke tiga.
a² + 8a + 15 = (a + 3)(a + 5)
Diperoleh angka 3 dan 5 karena 3 + 5 = 8 dan 3 x 5 = 15
2. p² + 9p + 20 = . . .
Jawab,
Sebelumnya harus menentukan dua angka yang jika ditambahkan nilainya sama dengan angka tengah dan jika dikalikan nilainya sama dengan angka ke tiga.
p² + 9p + 20 = (p + 4)(p + 5)
Diperoleh angka 4 dan 5 karena 4 + 5 = 9 dan 4 x 5 = 20
3. n² + 8n + 16 = . . . 

Jawab,
Sebelumnya harus menentukan dua angka yang jika ditambahkan nilainya sama dengan angka tengah dan jika dikalikan nilainya sama dengan angka ke tiga.
n² + 8n + 16 = (n + 4)(n + 4)
Diperoleh angka 4 dan 4 karena 4 + 4 = 8 dan 4 x 4 = 16
4. q² + 12q + 27 = . . .
Jawab,
Sebelumnya harus menentukan dua angka yang jika ditambahkan nilainya sama dengan angka tengah dan jika dikalikan nilainya sama dengan angka ke tiga.
q² + 12q + 27 = (q + 3)(q + 9)
Diperoleh angka 3 dan 9 karena 3 + 9 = 12 dan 3 x 9 = 27

Metode Pemfaktoran ax² + bx + c = 0, a ≠ 0

Rumus pemfaktoran aljabar selanjutnya menggunakan metode ax² + bx + c dimana a ≠ 0. Berikut persamaannya:
ax² + bx + c = 0
dimana
a x c = m + n
m + n = b
Contoh Soal 
Hitunglah faktor dari bentuk aljabar dibawah ini!
1. 6x² + 3 – 9 = 0
Jawab.
6x² + 3x – 9 = 0
a x c = m x n, m + n = b
Maka diperoleh angka 9 dan (-6), karena 6 x (-9) =  9 x (-6) dan 9 + (-6) = 3
Jadi 6x² + 3x – 9 = 6x² + 9x – 6x – 9
                           = 3x (2x + 3) – 3 (2x + 3)
                           = (3x – 3)(2x + 3)
2. 3x² + 23 – 8 = 0
Jawab.
3x² + 23 – 8 = 0
a x c = m x n, m + n = b
Maka diperoleh angka 24 dan (-1), karena 3 x (-8) =  24 x (-1) dan 24 + (-1) = 23
Jadi 3x² + 23 – 8 = 3x² + 24x – 1x – 8
                           = 3x (x + 8) – 1 (x + 8)
                           = (3x – 1)(x + 8)
Demikianlah penjelasan mengenai rumus pemfaktoran aljabar beserta contoh soal pemfaktoran aljabar. Untuk menyelesaikan soal soal pemfaktoran tersebut, anda harus memahami tentang FPB terlebih dahulu. Selain itu anda juga harus mengetahui bentuk persamaannya. Dengan begitu anda dapat menyelesaikannya menggunakan rumus pemfaktoran yang ada. Semoga artikel ini dapat menambah ilmu anda. Terima kasih.

Komentar

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 12xyz = 2 (4abc + 6xyz) Faktorisasi Bentuk Kuadrat x 2  + 2xy

perbedaan permutasi dan kombinasi

Pengertian Permutasi dan Kombinasi Permutasi adalah banyaknya cara untuk membuat susunan dengan jumlah pada suatu anggota tertentu dari anggota-anggota suatu himpunan. Kombinasi ialah banyaknya cara memilih anggota pada jumlah tertentu dari dari anggota-anggota suatu himpunan. Atau dengan kalimat lain kombinasi yaitu banyaknya cara membuat himpunan bagian dengan jumlah anggota tertentu dari anggota-anggota suatu himpunan. Rumus Permutasi Misal diketahui himpunan memiliki anggota sejumlah n, maka susunan terurut yang terdiri dari r buah anggota dinamakan permutasi r dari n, ditulis sebagai P(n,r) dimana r lebih kecil atau sama dengan n. Rumus permutasi adalah sebagai berikut. rumus permutasi Jika r = n , Maka P (n,n) = n ! (ingat 0!=1) Contoh untuk menghitung banyaknya cara menyusun urutan dua huruf dari huruf-huruf a, b, c adalah sebagai berikut. Rumus Kombinasi Misal diketahui suatu himpunan mempunyai anggota sejumlah n, maka pemilihan r buah angg

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Macam - Macam Simetri Bangun Datar - Setiap bangun datar mempunyai sifat tersendiri yang menjadi ciri khas bangun datar tersebut. Diantara sifat - sifat tersebut ada yang dinamakan simetri. Dalam pembahasan kali ini kita akan membahas materi yaitu mengenai macam - macam simetri pada bangun datar. Untuk lebih jelasnya perhatikan bik - baik pembahasan di bawah ini. Pengertian Dan Macam - Macam Simetri Pada Bangun Datar Simetri Lipat Simetri lipat pada bangun datar didefinisikan sebagai banyaknya lipatan pada bangun datar yang bisa membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu diketahui bahwa tidak semua bangun datar mempunyai garis yang disebut dengan sumbu simetri. Beberapa bangun datar tidak memiliki sumbu simetri sama sekali. Di bawah ini beberapa gambar bangun datar yang memiliki