Langsung ke konten utama

Operasi Penjumlahan dan Pengurangan Bilangan Pecahan Matematika Kelas 4 SD

Penjumlahan dan Pengurangan Bilangan Pecahan - Artikel kali ini, admin akan menjelaskan maeri tentang penjumlahan dan pengurangan bilangan pecahan. Materi ini merupakan salah satu materi pelajaran matematika kelas 4 SD. Di dalam bilangan pecahan, penyebutnya ada yang sama dan ada yang memiliki penyebut yang berbeda. Materi ini akan membahas kedua operasi bilangan pecahan tersebut yaitu penjumlahan pecahan (baik penjumlahan pecahan biasa maupun penjumlahan pecahan campuran) dan pengurangan pecahan (baik pengurangan pecahan biasa maupun pengurangan pecahan campuran). Untuk lebih memahami, perhatikan baik - baik penjelasan berikut ini.

Operasi Penjumlahan dan Pengurangan Bilangan Pecahan Dilengkapi Pembahasan Contoh Soal

Penjumlahan Bilangan Pecahan

Penjumlahan bilangan pecahan biasa
Dalam menjumlahkan pecahan biasa yang memiliki penyebut yang sama, kalian cukup menjumlahkan angka yang ada di bagian atas atau biasa dinamakan sebagai "pembilang" sementara penyebutnya tetap.
Contoh :
Penjumlahan bilangan pecahan biasa
Sedangkan untuk menjumlahkan pecahan yang memiliki penyebut yang berbeda, maka kalian harus mengubah atau menyamakan penyebutnya terlebih dahulu, yaitu dengan cara mencari KPK dari penyebutnya.
Contoh :
Penjumlahan Bilangan Pecahan
KPK dari 5 dan 7 adalah 35, sehingga :
Penjumlahan Bilangan Pecahan
Sifat - sifat penjumlahan pada bilangan pecahan sama dengan sifat - sifat penjumlahan pada bilangan bulat, yaitu :
(a + b = b + a), (a + 0 = a) dan {(a + b ) + c = a + (b + c)}

Penjumlahan bilangan pecahan campuran
Pecahan campuran merupakan perpaduan antara bilangan asli dan bilangan campuran. Dalam melakukan penjumlahan bilangan pecahan campuran, hal yang harus dilakukan adalah menjumlahkan bagian bilangan bulat dan bagian bilangan pecahan secara terpisah dan menyamakan penyebut dengan cara mencari KPK dari penyebutnya.

Contoh :
Penjumlahan Bilangan Pecahan
Penjumlahan Bilangan Pecahan (Jumlahkan bilangan bulat dengan bilangan bulat dan samakan
                                                            penyebut dengan mencari KPK dari 3 dan 7)
                     (Jumlahkan bilangan pecahan dengan bilangan pecahan)
                    

Pengurangan Bilangan Pecahan

Pengurangan bilangan pecahan biasa
Konsep pengurangan pada bilangan pecahan biasa sama saja seperti pada penjumlahan. Jika penyebutnya sama tinggal mengurangkan angka yang ada di atasnya atau "pembilang".

Contoh :
Pengurangan Bilangan Pecahan
Secara umum dapat dituliskan :
Pengurangan Bilangan Pecahan

Untuk bilangan pecahan yang penyebutnya berbeda juga sama, terlebih dahulu harus disamakan penyebutnya dengan cara mencari KPK dari kedua bilangan penyebut.
Contoh :
Pengurangan Bilangan Pecahan
KPK dari 6 dan 5 adalah 30, sehingga :
Pengurangan Bilangan Pecahan
Pengurangan bilangan pecahan campuran
Dalam pengurangan bilangan pecahan campuran, caranya sama saja dengan penjumlahan pecahan campuran yaitu mengurangkan bagian bilangan bulat dan bagian bilangan pecahannya secara terpisah dan menyamakan penyebut dengan cara mencari KPK dari penyebutnya.

Contoh :
Pengurangan bilangan pecahan campuran

                    Pengurangan bilangan pecahan campuran

                   Pengurangan bilangan pecahan campuran
Itulah penjelasan materi mengenai Operasi Penjumlahan dan Pengurangan Bilangan Pecahan, semoga kalian bisa memahami penjelasan dan pembahasan contoh soal di atas sehingga bisa membantu kalian dalam menyelesaikan soal - soal tentang bilangan pecahan dengan mudah.

Komentar

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 12xyz = 2 (4abc + 6xyz) Faktorisasi Bentuk Kuadrat x 2  + 2xy

perbedaan permutasi dan kombinasi

Pengertian Permutasi dan Kombinasi Permutasi adalah banyaknya cara untuk membuat susunan dengan jumlah pada suatu anggota tertentu dari anggota-anggota suatu himpunan. Kombinasi ialah banyaknya cara memilih anggota pada jumlah tertentu dari dari anggota-anggota suatu himpunan. Atau dengan kalimat lain kombinasi yaitu banyaknya cara membuat himpunan bagian dengan jumlah anggota tertentu dari anggota-anggota suatu himpunan. Rumus Permutasi Misal diketahui himpunan memiliki anggota sejumlah n, maka susunan terurut yang terdiri dari r buah anggota dinamakan permutasi r dari n, ditulis sebagai P(n,r) dimana r lebih kecil atau sama dengan n. Rumus permutasi adalah sebagai berikut. rumus permutasi Jika r = n , Maka P (n,n) = n ! (ingat 0!=1) Contoh untuk menghitung banyaknya cara menyusun urutan dua huruf dari huruf-huruf a, b, c adalah sebagai berikut. Rumus Kombinasi Misal diketahui suatu himpunan mempunyai anggota sejumlah n, maka pemilihan r buah angg

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Macam - Macam Simetri Bangun Datar - Setiap bangun datar mempunyai sifat tersendiri yang menjadi ciri khas bangun datar tersebut. Diantara sifat - sifat tersebut ada yang dinamakan simetri. Dalam pembahasan kali ini kita akan membahas materi yaitu mengenai macam - macam simetri pada bangun datar. Untuk lebih jelasnya perhatikan bik - baik pembahasan di bawah ini. Pengertian Dan Macam - Macam Simetri Pada Bangun Datar Simetri Lipat Simetri lipat pada bangun datar didefinisikan sebagai banyaknya lipatan pada bangun datar yang bisa membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu diketahui bahwa tidak semua bangun datar mempunyai garis yang disebut dengan sumbu simetri. Beberapa bangun datar tidak memiliki sumbu simetri sama sekali. Di bawah ini beberapa gambar bangun datar yang memiliki