Langsung ke konten utama

Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Dalam artikel sebelumnya telah dijelaskan materi mengenai Pengertian Relasi beserta cara penyajiannya, kali ini Belajar Matematikaku akan membahas materi mengenai Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika. Relasi dan fungsi memiliki hubungan yang erat karena masih membahas mengenai hubungan antar himpunan. Ada banyak contoh yang bisa menggambarkan sebuah relasi antara satu himpunan dengan himpunan yang lainnya seperti bisa kalian lihat pada gambar berikut ini :
Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Gambar di atas menunjukkan relasi antara sebuah negara dengan ibukotanya. Pada diagram tersebut kita bisa melihat bahwa tiap - tiap anggota pada himpunan A memiliki pasangan yang tepat pada masing - masing anggota himpunan B. Contoh lain dari relasi bisa kalian lihat pada diagram panah berikut ini :
Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Sama halnya dengan diagram panah yang pertama, pada diagram panah ini masing - masing anggota pada himpunan P memiliki pasangan yang tepat pada tiap anggota himpunan Q. Konsep relasi antara kedua himpunan (A dan B) serta (P dan Q) dikenal dengan sebutan Fungsi atau Pemetaan. Artinya kedua diagram tersebut bisa disebut dengan fungsi A ke B atau fungsi P ke Q.

Berdasarkan contoh di atas disimpulkan bahwa definisi dari fungsi adalah relasi khusus yang memasangkan tiap - tiap anggota yang ada pada suatu himpunan tepaat dengan tiap  - tiap anggota yang ada pada himpunan lainnya.

Pengertian dan Macam - Macam Fungsi dalam Matematika


Ketika berbicara mengenai fungsi, maka kita harus mulai terbiasa dengan beberapa istilah yang digunakan di dalamnya, diantaranya yaitu :

Domain = daerah asal
Kodomain = daerah lawan
Range = daerah hasil

Agar kalian bisa memahami istilah - istilah di atas, perhatikan baik - baik contoh soal berikut ini :

Contoh Soal :
Sebuah fungsi f dari himpunan F dan G dinyatakan dalam aturan x + 3, x F. Jika diketahui bahwa F = {2, 3, 5, 7} dan G = {1, 2, 3, ..., 12}, maka tentukanlah :

a. Himpunan pasangan berurutan dalam f
b. Domain, kodomain, dan range dari f

Penyelesaian :
a. f : x => x + 3
x = 2 => f(x) = 2 + 3 = 5
x = 3 => f(x) = 3 + 3 = 6
x = 5 => f(x) = 5 + 3 = 8
x = 7 => f(x) = 7 + 3 = 10

Maka himpunan pasangan berurutannya adalah (x(f(x)) = {(2,5), (3,6), (5,8), (7,10)}

b. Domain (daerah asal) = {2, 3, 5, 7}
    Kodomain (daerah lawan) = {1, 2, 3, ..., 12}
    Range (daerah hasil) = {5, 6, 8, 10}

Penyajian Fungsi

Karena fungsi merupakan bentuk dari relasi, maka cara menyajikannya sama saja dengan cara penyajian relasi. Fungsi bisa disajikan dalam bentuk diagram panah, diagram kartesius, dan juga himpunan pasangan berurut.

Cara Menentukan Banyaknya Pemetaan atau Fungsi

Banyaknya pemetaan yang terbentuk dari dua buah himpunan bisa dicari dengan menggunakan rumus yang ada pada tabel berikut ini :

Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Demikianlah pembahasan materi mengenai Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika. Semoga kalian bisa memahami penjelasan di atas dnegan mudah sehingga artikel ini bisa membantu kalian dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 12xyz = 2 (4abc + 6xyz) Faktorisasi Bentuk Kuadrat x 2  + 2xy

perbedaan permutasi dan kombinasi

Pengertian Permutasi dan Kombinasi Permutasi adalah banyaknya cara untuk membuat susunan dengan jumlah pada suatu anggota tertentu dari anggota-anggota suatu himpunan. Kombinasi ialah banyaknya cara memilih anggota pada jumlah tertentu dari dari anggota-anggota suatu himpunan. Atau dengan kalimat lain kombinasi yaitu banyaknya cara membuat himpunan bagian dengan jumlah anggota tertentu dari anggota-anggota suatu himpunan. Rumus Permutasi Misal diketahui himpunan memiliki anggota sejumlah n, maka susunan terurut yang terdiri dari r buah anggota dinamakan permutasi r dari n, ditulis sebagai P(n,r) dimana r lebih kecil atau sama dengan n. Rumus permutasi adalah sebagai berikut. rumus permutasi Jika r = n , Maka P (n,n) = n ! (ingat 0!=1) Contoh untuk menghitung banyaknya cara menyusun urutan dua huruf dari huruf-huruf a, b, c adalah sebagai berikut. Rumus Kombinasi Misal diketahui suatu himpunan mempunyai anggota sejumlah n, maka pemilihan r buah angg

Pengertian Dan Macam - Macam Simetri Pada Bangun Datar

Macam - Macam Simetri Bangun Datar - Setiap bangun datar mempunyai sifat tersendiri yang menjadi ciri khas bangun datar tersebut. Diantara sifat - sifat tersebut ada yang dinamakan simetri. Dalam pembahasan kali ini kita akan membahas materi yaitu mengenai macam - macam simetri pada bangun datar. Untuk lebih jelasnya perhatikan bik - baik pembahasan di bawah ini. Pengertian Dan Macam - Macam Simetri Pada Bangun Datar Simetri Lipat Simetri lipat pada bangun datar didefinisikan sebagai banyaknya lipatan pada bangun datar yang bisa membagi bangun datar tersebut sehingga setengah bagian dari bangun datar tersebut bisa menutupi setengah bagian yang lain. Garis yang dapat membagi sebuah bangun datar menjadi dua dan kongruen disebut sebagai sumbu simetri. Perlu diketahui bahwa tidak semua bangun datar mempunyai garis yang disebut dengan sumbu simetri. Beberapa bangun datar tidak memiliki sumbu simetri sama sekali. Di bawah ini beberapa gambar bangun datar yang memiliki