Langsung ke konten utama

Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Dalam artikel sebelumnya telah dijelaskan materi mengenai Pengertian Relasi beserta cara penyajiannya, kali ini Belajar Matematikaku akan membahas materi mengenai Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika. Relasi dan fungsi memiliki hubungan yang erat karena masih membahas mengenai hubungan antar himpunan. Ada banyak contoh yang bisa menggambarkan sebuah relasi antara satu himpunan dengan himpunan yang lainnya seperti bisa kalian lihat pada gambar berikut ini :
Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Gambar di atas menunjukkan relasi antara sebuah negara dengan ibukotanya. Pada diagram tersebut kita bisa melihat bahwa tiap - tiap anggota pada himpunan A memiliki pasangan yang tepat pada masing - masing anggota himpunan B. Contoh lain dari relasi bisa kalian lihat pada diagram panah berikut ini :
Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Sama halnya dengan diagram panah yang pertama, pada diagram panah ini masing - masing anggota pada himpunan P memiliki pasangan yang tepat pada tiap anggota himpunan Q. Konsep relasi antara kedua himpunan (A dan B) serta (P dan Q) dikenal dengan sebutan Fungsi atau Pemetaan. Artinya kedua diagram tersebut bisa disebut dengan fungsi A ke B atau fungsi P ke Q.

Berdasarkan contoh di atas disimpulkan bahwa definisi dari fungsi adalah relasi khusus yang memasangkan tiap - tiap anggota yang ada pada suatu himpunan tepaat dengan tiap  - tiap anggota yang ada pada himpunan lainnya.

Pengertian dan Macam - Macam Fungsi dalam Matematika


Ketika berbicara mengenai fungsi, maka kita harus mulai terbiasa dengan beberapa istilah yang digunakan di dalamnya, diantaranya yaitu :

Domain = daerah asal
Kodomain = daerah lawan
Range = daerah hasil

Agar kalian bisa memahami istilah - istilah di atas, perhatikan baik - baik contoh soal berikut ini :

Contoh Soal :
Sebuah fungsi f dari himpunan F dan G dinyatakan dalam aturan x + 3, x F. Jika diketahui bahwa F = {2, 3, 5, 7} dan G = {1, 2, 3, ..., 12}, maka tentukanlah :

a. Himpunan pasangan berurutan dalam f
b. Domain, kodomain, dan range dari f

Penyelesaian :
a. f : x => x + 3
x = 2 => f(x) = 2 + 3 = 5
x = 3 => f(x) = 3 + 3 = 6
x = 5 => f(x) = 5 + 3 = 8
x = 7 => f(x) = 7 + 3 = 10

Maka himpunan pasangan berurutannya adalah (x(f(x)) = {(2,5), (3,6), (5,8), (7,10)}

b. Domain (daerah asal) = {2, 3, 5, 7}
    Kodomain (daerah lawan) = {1, 2, 3, ..., 12}
    Range (daerah hasil) = {5, 6, 8, 10}

Penyajian Fungsi

Karena fungsi merupakan bentuk dari relasi, maka cara menyajikannya sama saja dengan cara penyajian relasi. Fungsi bisa disajikan dalam bentuk diagram panah, diagram kartesius, dan juga himpunan pasangan berurut.

Cara Menentukan Banyaknya Pemetaan atau Fungsi

Banyaknya pemetaan yang terbentuk dari dua buah himpunan bisa dicari dengan menggunakan rumus yang ada pada tabel berikut ini :

Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika

Demikianlah pembahasan materi mengenai Pengertian Fungsi dan Macam-macam Fungsi dalam Matematika. Semoga kalian bisa memahami penjelasan di atas dnegan mudah sehingga artikel ini bisa membantu kalian dalam mengerjakan soal - soal yang berkaitan dengan materi ini. Selamat belajar!

Postingan populer dari blog ini

Pemfaktoran Bentuk Aljabar Kelas 8 SMP Dilengkapi Pembahasan Contoh Soal

Pemfaktoran Bentuk Aljabar - Pemfaktoran suku aljabar merupakan bentuk penjumlahan suku - suku ke dalam bentuk perkalian atau faktor. Sebagai contoh, bentuk aljabar xy merupakan hasil perkalian dari x dan y ( xy = x x  y). Dari perkalian tersebut, dapat disimpulkan bahwa faktor dari xy adalah  x dan y. Sedangkan bentuk aljabar a (x + y) faktornya adalah a dan (x + y). Untuk lebih memahami materi ini, perhatikan baik - baik penjelasan di bawah ini. Hukum Distributif dalam Pemfaktoran Suku Aljabar Dalam pemfaktoran bentuk suku aljabar, hukum distributif berlaku aturan : a x (b + c) = (a x b) +  (a x c) Perhatikan contoh soal berikut : Faktorkanlah bentuk aljabar di bawah ini : A. 4 x 2  + 8x 2 y B. 8abc + 12xyz Penyelesaian : Dalam menjawab bentuk soal seperti di atas, kita harus mencari FPB dari setiap suku yang ada dalam bentuk aljabar tersebut : A. 4 x 2  + 8x 2 y = 4 x 2  (1 + 2y) B. 8abc + 1...

Satuan Waktu Dalam Matematika Disertai Contoh Soal dan Pembahasannya

Pembahasan Satuan Waktu Disertai Contoh Soal - Satuan pengukuran waktu secara umum terdiri dari detik, menit, jam, hari, minggu, bulan, dan tahun. Namun satuan waktu dalam matematika masih banyak yang lainnya. Untuk lebih jelasnya dalam artikel kali ini saya akan menjelaskan tentang macam - macam satuan pengukuran waktu beserta contoh soal satuan waktu dan pembahasannya. Daftar Satuan Pengukuran Waktu Dalam Matematika => 1 menit = 60 detik => 1 jam = 60 menit => 1 jam = 3600 detik => 1 hari = 24 jam => 1 minggu = 7 hari => 1 bulan = 30 hari => 1 tahun = 52 minggu => 1 tahun = 12 bulan => 1 lustrum = 5 tahun => 1 windu = 8 tahun => 1 dasa warsa = 10 tahun => 1 abad = 100 tahun Setelah mengetahui berbagai macam pengukuran satuan waktu di atas kita bisa lebih mudah untuk menyelesaikan soal - soal tentang pengukuran satuan waktu. Perhatikan bentuk - bentuk soal di bawah ini : Soal 1...

Gambar Jaring - Jaring Bangun Ruang Lengkap

Jaring - Jaring Bangun Ruang - Jaring - jaring merupakan pembelahan sebuah bangun yang berkaitan sehingga jika digabungkan akan menjadi sebuah bangun ruang tertentu. Setiap bangun ruang memiliki bentuk jaring - jaring yang berbeda tergantung pada bentuk sisi - sisi pada bangun ruang tersebut. Bangun ruang yang akan dibahas dalam materi kali ini yaitu kubus, balok, tabung. kerucut, prisma, dan limas. Gambar Jaring - Jaring Bangun Ruang Lengkap Kubus Kubus adalah sebuah bangun ruang yang terbentuk oleh enam buah sisi yang saling berbatasan dimana tiap sisi tersebut berbentuk persegi dengan ukuran yang sama besar. Sehingga apabila kita membelah sebuah kubus kemudian meletakkannya pada posisi mendatar akan diperoleh jaring - jaring kubus yang merupakan susunan dari enam buah persegi seperti terlihat pada gambar di bawah ini : Balok Sama halnya dengan kubus, balok juga terdiri dari enam buah sisi akan tetapi ukuran sisi pada balok berbeda. Terdapat 3 pasang sisi ...